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and extending our experiments to include the collisionless re­
gime by increasing fluence and decreasing pressure. 
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Mixed-Metal Clusters via Metal Hydride Coupling. 
New Rhenium-Osmium Clusters and the 
Crystal Structure of H2Re2Os3(CO)20 

Sir: 

The systematic preparation of metal carbonyl cluster 
compounds combining two or more different metals is a chal­
lenging synthetic problem and is potentially of practical im­
portance in the generation of supported bimetallic catalysts.1 

Heterometallic bond formation via the displacement reaction 
of a hietal carbonyl anion with a metal halide compound is the 
most predictable of the known procedures.2 Other methods 
involving either the copyrolysis of different homometallic 

carbonyl units2,3 or the combination of a metal carbonyl anion 
and a neutral metal carbonyl4'5 can be selective but frequently 
afford a mixture of products. The metal hydride coupling re­
action shown in 

LnMxS + HM'Lm - L„M* • • H • • M'Lm 

OrLnMx(H)Ml^-I-S (1) 

is a relatively unexplored approach to heterometallic cluster 
compounds.6 Loss of the two-electron donor Iigand S from the 
metal center M generates a vacant site that may interact with 
the H-M' bond to form either a stable M-H-M' three-center 
two-electron bond (as in HMnRe2(CO)i4

7) or new M-H and 
M-M' bonds (as suggested for formation of H20s2(CO)g8). 
We have recently shown that the labile derivatives Os3-
(CO)i2-xSx (x = 1,2; S = cyclooctene or acetonitrile) can be 
prepared and used for substitution reactions.9 Combining these 
derivatives with HRe(CO)5 as in eq 1 has allowed us to prepare 
the compounds Os3(CO) 12-x[HRe(CO)5Jx (x = 1,2). 

Treatment of the cyclooctene complex Os3(CO)io(CsHi4)29 

with an excess of HRe(CO)5 in benzene10 provided a single 
product, isolated as a yellow solid in 90% yield after thin-layer 
chromatography. The electron impact mass spectrum of this 
material is consistent with the formulation H2Re20s3(CO)2o-'2 

In its 1H NMR spectrum two hydride signals are observed at 
T 26.9 and 28.1 (CH2Cl2) with / H H = 2 Hz. The 13C (1HI 
NMR spectrum of the compound, prepared from 13CO-en-
riched Os3(CO) 10(CsHu)2, displays at 33 0C three singlets 
of intensity 2 C and four singlets of intensity IC.13 These data 
are consistent with a structure that retains the basic Os3 
triangle of Os3(CO)i2, but with two rhenium carbonyl groups 
substituted unsymmetrically for two equatorial carbonyl Ii-
gands (cf. Os3(CO)io(PEt3)2

14). The data do not determine 
whether the rhenium carbonyl groups are bound to the Os3 
triangle by Os-H-Re or Os-Re bonds. However, a single-
crystal x-ray diffraction study of H2Re2Os3(CO)2O has es­
tablished the latter mode together with the probable positions 
of the hydrogen ligands as in structure II. 

I II 

The H2Re2Os3(CO)2O molecule crystallizes in the mono-
clinic space group Cc with a - 9.248 (2) A, b = 23.010 (4) A, 
c = 29.665 (5) A, /3 = 104.59 (1) °, V = 6109 (2) A3, and TT 
(calcd) = 3.27 g cm"3 for M = 1505 and Z = 8. Diffraction 
data were collected with a Syntex P2i automated diffracto-
meter using Mo Ka radiation and an «-scan technique. Data 
were corrected for absorption (n = 205 cm -1); the structure 
was solved by Patterson methods (which indicated the lower 
space group Cc, rather than the centrosymmetric C2/c) and 
refined by full-matrix least-squares methods (409 variables; 
2764 data in the range 3° < 26 < 40° with F > a(F)) using the 
Syntex XTL system to final discrepancy indices of Rf = 4.5% 
and RWF = 4.9%. All atoms other than hydrogen atoms have 
been located and refined. Metal atoms were assigned aniso­
tropic thermal parameters, while all other atoms were re­
stricted to isotropic thermal parameters. The crystallographic 
asymmetric unit consists of two molecules of H2Re2Os3(CO)2O 
related to each other by a (local) pseudoinversion center at a 
general position in the unit cell. The two molecules have 
identical connectivities and their bond lengths and angles are 
identical with the limits of experimental error. One such 
molecule is illustrated in Figure 1. 

The metal core consists of a triangle of osmium atoms with 
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Figure 1. The H2Re2Os3(CO)2o molecule, with the probable positions of 
the hydride ligands indicated. 

a rhenium atom bonded to equatorial sites of two of these 
atoms. The Os(l)-Os(3) bond lengths in the two independent 
molecules are 2.876 (3) and 2.876 (3) A—i.e., closely similar 
to the Os-Os bond length of 2.877 (3) A (average) found in 
Os3(CO)i2.15 In contrast to this, the remaining Os-Os dis­
tances are significantly longer, with Os(l)-Os(2) = 3.058 (3) 
and 3.061 (3) A and Os(2)-Os(3) = 3.083 (3) and 3.074 (3) 
A. We believe that these vectors are bridged by ju2-hydrido 
ligands. (In other molecules simple /i2-hydrido bridged os­
mium-osmium bond lengths are 2.989 (1) A for (ix2-H)(H)-
Os3(CO)n

1 5 and 3.019 (1) A for Gu2-H)(H)Os3-
(CO)irjPPh3.)

16 The osmium-rhenium bond lengths are nor­
mal, with Os(l)-Re(4) = 2.952 (4) and 2.946 (4) A and 
Os(2)-Re(5) = 2.982 (3) and 2.975 (3) A. The angles in­
volving the equatorial rhenium atoms are as follows: 
zOs(2)-Os(l)-Re(4) = 104.1 (1) and 104.0 (1)° and 
/Os(3)-Os(2)-Re(5) = 104.2 (1) and 102.9 (I)0 . Each metal 
atom has a regular coordination geometry, there being three 
carbonyl ligands associated with Os(I) and Os(2), four for 
Os(3), five for Re(4) and Re(5). 

Treatment of Os3(CO) )2 with Me3NO-2H20 (1 equiv) in 
acetonitrile followed by excess HRe(C0)5 in benzene provided 
a single new product, which was isolated as a yellow solid in 
~50% yield after TLC. Spectroscopic data for this material 
is consistent with the formula HReOs3(CO)i617 and it is as­
signed structure I. In an attempt to prepare H3ReOs3(CO)2^ 
Os3(CO)I0(NCMe)2

9 was treated with 1 equiv Me3NO-
2H20/NCMe18 and then HRe(CO)5, but the product isolated 
was HReOs3(CO)15.

19 Similar treatment of H2Re2Os3(CO)20 
provided H2Re2Os3(CO) 19. However, subsequent experiments 
showed that H2Re2Os3(CO) 19 could be formed by allowing 
H2Re2Os3(CO)20 to react with Me3NO-2H20/NCMe alone; 
an analogous reaction gave HReOs3(CO) i5 from 
HReOs3(CO) 16. The detailed structures of these more con­
densed clusters remain to be determined. Nevertheless, it is 
clear that the combination of HRe(CO)5 coupling with 
Me3NO decarbonylation provides considerable control of 
metal-metal bond formation in the Re-Os system. The effi­
cacy of these techniques with other heterometallic combina­
tions is being explored. 
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Total Synthesis of rf/-Lycoramine 

Sir: 

Lycoramine (1) is one of the galanthamine-type alkaloids 
found in plants of the Amaryllidaceae.' We now report a total 
synthesis of ^/-lycoramine.2 

OCH3 

CH3 

I 

The synthesis of 1 features a new benzodihydrofuran ring 
construction (e.g., A —* B -* C). In the sequence, hetero-
atom-directed photoarylation3 (B -» C) establishes the crucial 
carbon-carbon bond4 joining an aromatic ring to a quaternary 
carbon atom located at a ring junction. The photoreaction 5a 
—• 6 — 7 to be described here is representative of a general 

Communications to the Editor 


